38 research outputs found

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    Prediction of the Input Accuracy of the Hiragana BCI

    No full text

    Bringing BCI Controlled Devices to End-Users: A User Centred Approach and Evaluation

    No full text

    I think, therefore i am: Usability and security of authentication using brainwaves

    No full text
    Abstract. With the embedding of EEG (electro-encephalography) sensors in wireless headsets and other consumer electronics, authenticating users based on their brainwave signals has become a realistic possibility. We undertake an experimental study of the usability and performance of user authentication using consumer-grade EEG sensor technology. By choosing custom tasks and custom acceptance thresholds for each subject, we can achieve 99 % authentication accuracy using single-channel EEG signals, which is on par with previous research employing multichannel EEG signals using clinical-grade devices. In addition to the usability improvement offered by the single-channel dry-contact EEG sensor, we also study the usability of different classes of mental tasks. We find that subjects have little difficulty recalling chosen “pass-thoughts” (e.g., their previously selected song to sing in their mind). They also have different preferences for tasks based on the perceived difficulty and enjoyability of the tasks. These results can inform the design of authentication systems that guide users in choosing tasks that are both usable and secure

    Evolutionary Brain Computer Interfaces

    No full text
    corecore